新闻资讯 更多+
加快经济发展动能转换是我国经济发展转型的重要任务,制造业转型升级是新旧动能转换的重要抓手,对于应对能源环保压力、劳动密集型产业生产效率低下等粗放发展弊病具有重要意义,同时是制造业企业提质、降本、增效的必要路径。
近年来,国家层面对于节能环保产业及智能制造给予多层次的政策支持。十九大报告提出,“加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合”,另外,强调“推进绿色发展。加快建立绿色生产和消费的法律制度和政策导向,建立健全绿色低碳循环发展的经济体系。构建市场导向的绿色技术创新体系,发展绿色金融,壮大节能环保产业、清洁生产产业、清洁能源产业”。十九届四中全会决定提出,“建立健全运用互联网、大数据、人工智能等技术手段进行行政管理的制度规则”。习近平总书记在2018年10月31日主持中共中央政治局第九次集体学习时,对“把握数字化、网络化、智能化融合发展契机”作出了重要论述。
中金企信国际咨询公布的《2022-2028年中国煤炭分选设备行业市场供需平衡度研究及投资战略可行性预测报告》
1、工业、矿业转型升级的具体手段是智能制造,以达到节能环保效果:智能制造可广泛应用于采矿业、制造业等工矿业领域,其中煤炭开采与洗选、金属与非金属矿物采选、机械制造等领域均可以应用智能制造产品以达到提质、降本、增效效果,进一步应对节能环保方面的挑战。
根据国家工业信息安全发展研究中心发布的《中国两化融合发展数据地图(2019)》,信息化与工业化融合发展水平是产业智能化水平的评价指标,2019年中国工业领域两化融合发展水平达到55.1,其中采矿业两化融合发展水平为48.8,能源工业、制造业和采掘业从高到低依次排列。
煤炭行业作为我国重要的传统能源行业,是我国国民经济的重要组成部分,其智能化建设直接关系我国国民经济和社会智能化的进程。同时煤矿智能化是煤炭工业高质量发展的核心技术支撑,形成全面感知、实时互联、分析决策、自主学习、动态预测、协同控制的智能系统,实现煤矿开拓、采掘(剥)、运输、通风、洗选、安全保障、经营管理等过程的智能化运行,对于提升煤矿安全生产水平、提升煤炭洗选精细及环保水平、保障煤炭稳定供应具有重要意义。
国务院印发的《新一代人工智能发展规划》指出“推广智能工厂,加强智能工厂关键技术和体系方法的应用示范,重点推广生产线重构与动态智能调度、生产装备智能物联和云化数据采集、多维人机协同与互操作系统,鼓励引导企业建设工厂大数据系统、网络化分布式生产设施,引导生产设备网络化、生产数据可视化、生产过程透明化和生产现场无人化。”
基于发行人目前的主要业务情况,主要下游行业包括煤炭、非煤矿物以及其他流程工业领域。
2、煤炭开采及洗选行业的发展主旋律之一是进行智能化升级:
(1)“碳中和”目标下,对煤炭行业产生深远影响:我国是个“富煤、少气、缺油”的国家,过往煤炭都是我国的主体能源。2020年9月22日,国家主席习近平在第七十五届联合国大会上表示,中国将力争于2030年前达到碳排放峰值,努力争取2060年前实现碳中和。2020年12月16日至18日,中央经济工作会议对做好2021年碳达峰、碳中和工作做出明确部署,明确抓紧制定2030年前碳排放达峰行动方案,支持有条件的地方率先达峰。其中,碳中和是指在一定时间内直接或间接产生的二氧化碳排放总量,通过二氧化碳去除手段抵消这部分碳排放,达到“净零排放”的目的。碳达峰是指二氧化碳排放量达到历史最高值后,先进入平台期在一定范围内波动,然后进入平稳下降阶段。碳排放达峰是二氧化碳排放量由增转降的拐点。
综合国家战略及技术发展,中国实现碳中和的策略整体思路与发达经济体类似,即(A)电力部门深度脱碳;(B)非电力部门深度电气化;(C)终端设备节能提效;(D)碳排放端“绿化”(即采用碳捕捉封存等技术实现碳排放的“回收”)。其中,改变能源结构是实现碳达峰、碳中和目标的主方向。我国计划在2030年前实现碳达峰,所以预计未来15~20年内,煤炭的产能不会大幅下降,但将逐步进入高质量发展期。对于安全风险大、煤炭资源差、技术落后、高能耗、高排放的矿山及装备也必将被逐步淘汰。预计20年后煤炭产能将进一步下降,对所有从事煤炭生产及服务的企业将是重大冲击,只有拥有高质量的煤炭资源、高精尖的技术、行业头部企业可以继续从事部分煤炭业务。
另外,还需要结合发展碳捕获、利用与封存(CCUS)技术。CCS(Carbon Captureand Storage,碳捕获与封存)技术是稳定大气温室气体浓度的减缓行动组合中的一种选择方案。CCUS技术是CCS技术新的发展趋势,即把生产过程中排放的二氧化碳进行提纯,继而投入到新的生产过程中,可以循环再利用,而不是简单地封存。
综上,电力部门深度脱碳和非电力部门深度电气化长期来看一定程度抑制煤炭需求,需结合发展碳捕获、利用与封存(CCUS)技术,从节能、减排、植树造林、增加非化石能源的供给量、研发利用储能技术等多方向实现碳达峰及碳中和目标。
(2)中短期来看,煤炭定位为基础能源:碳中和背景下我国煤炭行业在2021~2030年的能源定位仍为基础能源,消费整体趋势预计进入平台期。据《碳中和背景下我国煤炭行业的发展与转型研究》,在我国实现碳中和的道路上,煤炭行业的能源定位将经历基础能源、重要能源、备用能源的三重转变。未来十年,煤炭行业仍将作为国内的基础能源,消费量将进入平台期,预计在此期间煤炭整体消费有望达峰。
碳中和背景下中国煤炭行业发展形势分析
煤炭行业重点方向将由去产能转向存量优化。节能减排、能源调结构是我国经济高质量发展的长期目标。据统计,2017年二氧化碳排放量68.63亿吨,其中70.5%来自煤炭,表明煤炭贡献主要二氧化碳排放,深化煤炭行业供给侧改革是节能减排的重要手段。2021年6月出台煤炭工业“十四五”高质量发展指导意见》,计划到“十四五”末煤炭产量控制在41亿吨左右,全国煤炭消费量42亿吨左右,煤矿数量减少到4,000处左右,大型煤矿产量占85%以上,大型煤炭基地产量占97%以上;煤矿采煤机械化程度90%左右,原煤入选(洗)率80%以上;煤矸石利用与达标排放率100%。
(3)煤炭分选将趋向更智能、更环保的方法:在煤炭生产加工过程中,直接从矿井中开采出来的不经任何加工处理的煤称之为原煤,将煤和矸石进行分离是煤炭加工过程中不可缺少的一步。选煤工序能将煤炭分成不同质量、规格的产品,有利于煤炭的高效综合利用;此外选煤过程还能去除原煤中含有的黄铁矿等杂质,减少燃煤对大气的污染,具有较高的环保意义。2020年,我国原煤入洗率达到74.1%,比2015年提高8.2%。
①常见的煤炭分选技术:在煤炭生产加工过程中,直接从矿井中开采出来的不经任何加工处理的煤称之为原煤,将煤和矸石进行分离是煤炭加工过程中不可缺少的一步。选煤工序能将煤炭分成不同质量、规格的产品,有利于煤炭的高效综合利用;此外选煤过程还能去除原煤中含有的黄铁矿等杂质,减少燃煤对大气的污染,具有较高的环保意义。因此,煤炭分选是煤炭工业的重要环节。
煤矸分选的方法以分选介质来分类主要包括湿选与干选。湿法选煤又称洗煤,主要有跳汰分选、重介质分选和浮选等湿选方法,是目前我国选煤厂常用的选煤方法。干法选煤在分选过程不使用水,一般包括人工挑选、智能光电干选、风力煤矸分选、复合式干选、空气重介质流化等。
关于煤炭分选主流方法应用占比情况无公开可靠数据可参考,通过对煤炭加工企业选样调研的方式来获取相关数据。2021年8月,选取国家能源集团、中煤能源集团、山东能源集团、陕煤集团和山西焦煤集团等13家煤炭集团作为调研目标,其中国家能源集团和中煤集团是煤炭产量最大的两个全国性集团,山东能源集团与陕煤集团是省属煤炭企业的典型代表,山西焦煤集团是我国最大的炼焦煤采选企业。根据国家统计局数据,2020年我国煤炭产量为38.44亿吨,通过调研的13个大型煤炭生产企业,调研的合计产能为20.68亿吨,约占全国总产能的54%,本次调研有较强的代表性。
从上表可知:
根据这次调研,目前主流的分选方法为湿法选煤,总占比为95.76%;干法选煤总占比为4.24%,其中智能光电选占比为3.25%,传统风选占比为0.99%。湿法选煤是我国选煤装备主要依赖的技术工艺方法,但随着我国对煤炭行业节能增效以及煤矿智能化要求的不断提高,湿法选煤的弊端日益凸显。从地域分布的角度来说,国内煤炭资源丰富的地区主要坐落于中西部干燥和水资源匮乏地区,因此湿法选煤在这些地区的应用会受到水资源的严重制约,同时也使我国煤炭的利用率与许多发达国家形成了较大差距。对于部分易泥化的煤,湿法选煤会导致额外的煤泥产生,从而导致煤的回收率下降,造成额外的损耗。从环境保护的角度,湿法选煤技术会在应用中产生大量煤泥水,煤泥水中夹杂的细粒粘土、泥砂和煤会对环境造成污染。因此,大力推行干选技术是选煤业的重大趋势,同时,在保证提高煤炭的分选精度的条件下,干选技术也能缓解对环境的影响。
②智能光电干选技术概况:智能光电干选技术是指利用射线(X射线及γ射线)、红外、可见光、激光及紫外线识别等光电识别技术,针对需要识别物体的不同特征建立与之相匹配的模型并进行分选的智能化装备,是集机械、硬件、算法、软件于一体的智能化系统。近年来,智能光电干选装备行业得到了迅速发展,2015年10月,发行人发布了基于光电识别技术的TDS智能干选设备,进一步实现了智能光电干选技术的产业化实践。TDS智能干选设备在分选精度、分选粒度、分选能力、稳定运行能力上均有了较大的突破,智能光电干选技术逐渐被行业接受认可。